

Local Concentration, National Concentration, and the Spatial Correlations of Markups

Jonathan Becker^a

Chris Edmond

Virgiliu Midrigan^{b,d}

Daniel Yi Xu^{c,d}

^a Stony Brook University

^b New York University

^c Duke University

^d NBER

January 3, 2026

ASSA 2026 Annual Meeting

Motivation

- **Increasing** national and local production concentration
[Autor *et al.* \(2020\)](#) and [Autor *et al.* \(2023\)](#)
- With endogenously variable markups this might be concerning
[Edmond, Midrigan, and Xu \(2023\)](#)
- But, evidence of **divergence** of national and local sales concentration
[Rossi-Hansberg and Hsieh \(2023\)](#) and [Benkard *et al.* \(2023\)](#)
- **This paper:** Spatial model \Rightarrow local sales HHI \Rightarrow markups in space

This Paper

- General equilibrium model of intra-national trade with
 - Heterogenous **multi-unit** manufacturing firms **shipping** across markets
 - Oligopolistic competition in each destination market
- Calibrate model to match
 - **National concentration** of 6-digit NAICS industries
 - Operation of **multi-unit** firms across Economic Areas
 - **Gravity effects** at the 3-digit industry level from Commodity Flow Survey

Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - ▶ Spatial Correlations
 - ▶ Geography Matters
 - ▶ Trade Cost Reduction

The Environment

- J locations indexed at $j, k = 1, \dots, J$ [*origin = j , destination = k*]
- Continuum of sectors $s \in (0, 1)$
- There are $n(s)$ firms i in each sector s [*oligopolistic competition*]
 - ▶ Firms can have multiple establishments
 - ▶ Firm-location productivity $z_{ij}(s) = \bar{z}_i(s) \hat{z}_{ij}(s)$
- Sector-specific iceberg trade cost $\tau_{jk}(s) = \text{distance}_{jk}^{\delta(s)}$
- Labor L_j at location j ; supply e_j efficiency units [*immobile in benchmark*]

Demand & Production

- *Demand:* in destination k the non-tradable final good is produced as

$$C_k = \left(\int C_k(s)^{\frac{\theta-1}{\theta}} ds \right)^{\frac{\theta}{\theta-1}} \text{ with } \theta > 1 \quad \text{and} \quad C_k(s) = \left(\sum_{i=1}^{n(s)} c_{ik}(s)^{\frac{\gamma-1}{\gamma}} \right)^{\frac{\gamma}{\gamma-1}} \text{ with } \gamma > \theta$$

- Firm i 's shipment to k is itself a CES aggregate over different establishments

$$c_{ik}(s) = \left(\sum_{j=1}^J c_{ijk}(s)^{\frac{\lambda-1}{\lambda}} \right)^{\frac{\lambda}{\lambda-1}}$$

- *Production:* firm i in origin j for destination k produces

$$y_{ijk}(s) = z_{ij}(s) \ell_{ijk}(s)$$

Demand & Production

- *Demand:* in destination k the non-tradable final good is produced as

$$C_k = \left(\int C_k(s)^{\frac{\theta-1}{\theta}} ds \right)^{\frac{\theta}{\theta-1}} \text{ with } \theta > 1 \quad \text{and} \quad C_k(s) = \left(\sum_{i=1}^{n(s)} c_{ik}(s)^{\frac{\gamma-1}{\gamma}} \right)^{\frac{\gamma}{\gamma-1}} \text{ with } \gamma > \theta$$

- Firm i 's shipment to k is itself a CES aggregate over different establishments

$$c_{ik}(s) = \left(\sum_{j=1}^J c_{ijk}(s)^{\frac{\lambda-1}{\lambda}} \right)^{\frac{\lambda}{\lambda-1}}$$

- *Production:* firm i in origin j for destination k produces

$$y_{ijk}(s) = z_{ij}(s) \ell_{ijk}(s)$$

Profit Maximization: Destination-by-Destination

- *Within-firm allocation:* cost minimization \Rightarrow origin-independent markup

$$p_{ijk}(s) = \mu_{ik}(s) \frac{w_j}{z_{ij}(s)} \quad \rightsquigarrow \quad P_{ik}(s) = \mu_{ik}(s) \underbrace{\left(\sum_{j=1}^J \left(\frac{\tau_{jk}(s) w_j}{z_{ij}(s)} \right)^{1-\lambda} \right)^{\frac{1}{1-\lambda}}}_{\text{unit-cost } \phi_{ik}(s) \text{ of } c_{ik}(s)}$$

- *Local Competition:* Cournot competition at each destination k

$$\max_{c_{ik}(s)} \left\{ c_{ik}(s) \left(P_{ik}(s) - \phi_{ik}(s) \right) \middle| c_{ik}(s) = \left(\frac{P_{ik}(s)}{P_k(s)} \right)^{-\gamma} \left(\frac{P_k(s)}{P_k} \right)^{-\theta} C_k \right\}$$

Profit Maximization: Destination-by-Destination

- *Within-firm allocation*: cost minimization \Rightarrow origin-independent markup

$$p_{ijk}(s) = \mu_{ik}(s) \frac{w_j}{z_{ij}(s)} \quad \rightsquigarrow \quad P_{ik}(s) = \mu_{ik}(s) \underbrace{\left(\sum_{j=1}^J \left(\frac{\tau_{jk}(s) w_j}{z_{ij}(s)} \right)^{1-\lambda} \right)^{\frac{1}{1-\lambda}}}_{\text{unit-cost } \phi_{ik}(s) \text{ of } c_{ik}(s)}$$

- *Local Competition*: Cournot competition at each destination k

$$\max_{c_{ik}(s)} \left\{ c_{ik}(s) \left(P_{ik}(s) - \phi_{ik}(s) \right) \middle| c_{ik}(s) = \left(\frac{P_{ik}(s)}{P_k(s)} \right)^{-\gamma} \left(\frac{P_k(s)}{P_k} \right)^{-\theta} C_k \right\}$$

Profit Maximization: Destination-by-Destination

- *Within-firm allocation*: cost minimization \Rightarrow origin-independent markup

$$p_{ijk}(s) = \mu_{ik}(s) \frac{w_j}{z_{ij}(s)} \quad \rightsquigarrow \quad P_{ik}(s) = \mu_{ik}(s) \underbrace{\left(\sum_{j=1}^J \left(\frac{\tau_{jk}(s) w_j}{z_{ij}(s)} \right)^{1-\lambda} \right)^{\frac{1}{1-\lambda}}}_{\text{unit-cost } \phi_{ik}(s) \text{ of } c_{ik}(s)}$$

- *Local Competition*: Cournot competition at each destination k

$$\mu_{ik}(s) = \frac{\epsilon_{ik}(s)}{\epsilon_{ik}(s) - 1} \quad \text{with} \quad \epsilon_{ik}(s) = \left[\omega_{ik}(s) \frac{1}{\theta} + (1 - \omega_{ik}(s)) \frac{1}{\gamma} \right]^{-1}$$

Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - ▶ Spatial Correlations
 - ▶ Geography Matters
 - ▶ Trade Cost Reduction

Parameterization

- *Locations:* 170 BEA Economic Areas; firm locations from NETS

ID	Economic Area	Employment Share
1	Los Angeles-Riverside-Orange County, CA	14.6%
2	New York-Newark-Long Island, NY-NJ	7.2%
3	Chicago-Gary-Kenosha, IL-IN-WI	6.9%
:		
170	Scottsbluff, NE-WY	0.0012%

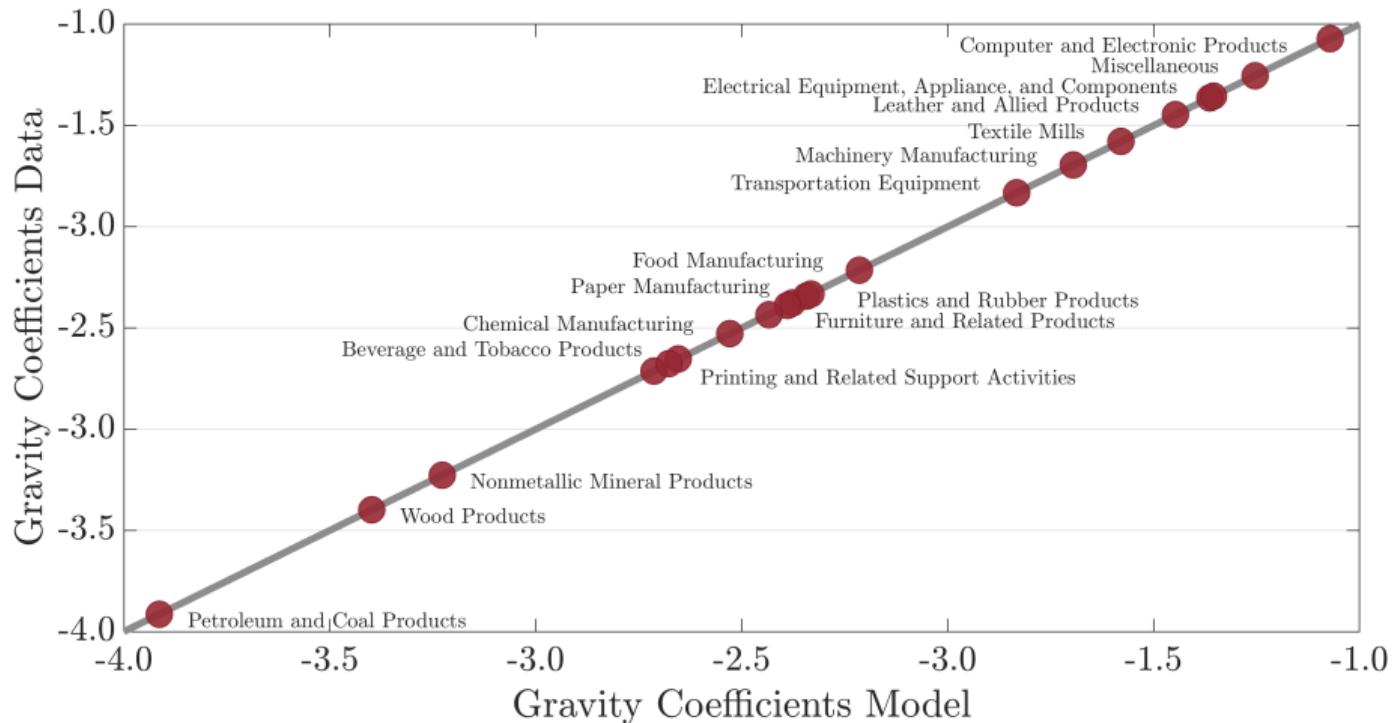
- *Sectors:* 363 NAICS 6-digit manufacturing

Ready-Mix Concrete (327320), Breakfast Cereal (311230), Computer Storage Device (334112), etc.

- *Employment:* L_j from US Census **County Business Patterns**
- *Efficiency units:* e_j to match wage bill $w_j L_j$ from CBP

Firms and Establishments

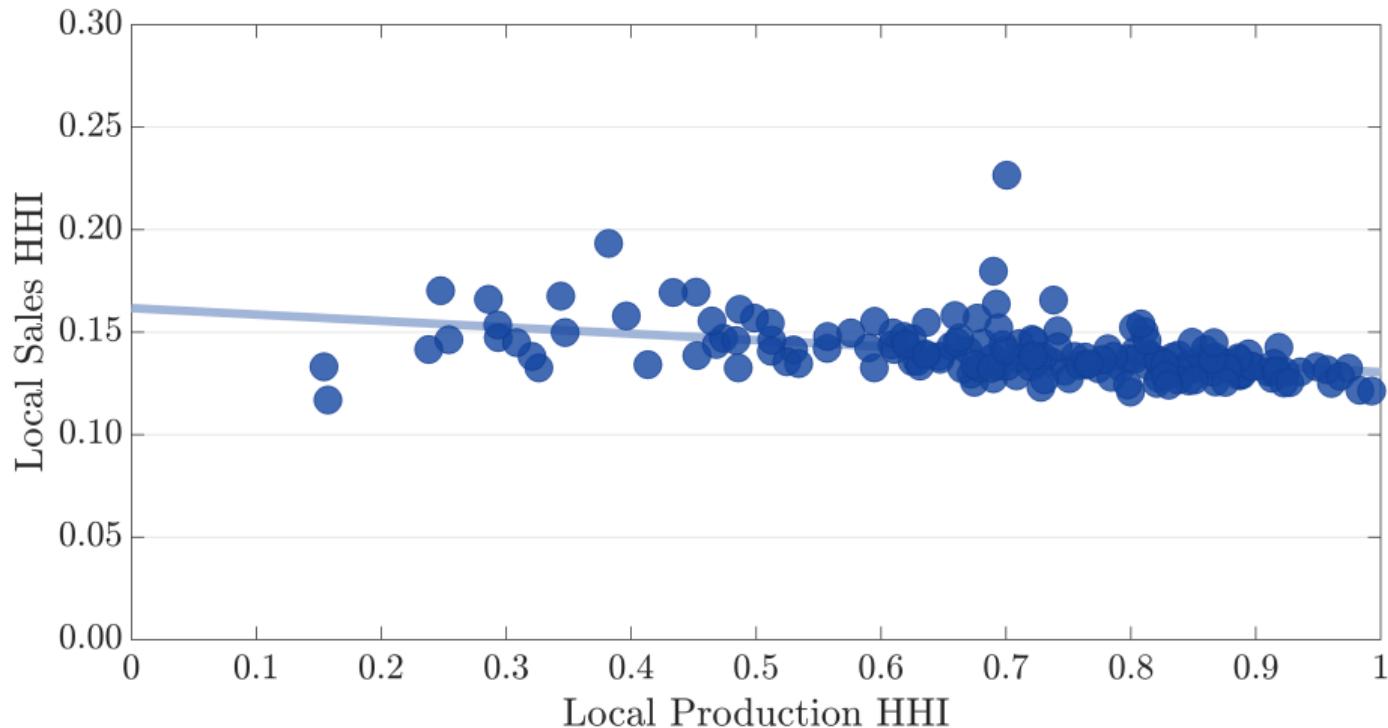
- *Firms*: have two characteristics
 1. $\bar{z}_i(s)$ firm-level productivity fixed effect (continuous)
 2. $n_i(s)$ number of locations where they have establishments (discrete)
- Productivity distribution: $F_Z(z) := \text{Prob}(\bar{z}_i(s) \leq z) = \text{Pareto}(\xi)$
- Unit-count distribution: $F_N(n) := \text{Prob}(n_i(s) \leq n) = \text{Empirical CDF}$
- Joint distribution (more productive \Rightarrow more establishments):
$$H(z, n) = \mathcal{C}(F_Z(z), F_N(n)) \quad \text{where} \quad \mathcal{C}(u, u') = \text{Gumbel Copula}(\rho)$$

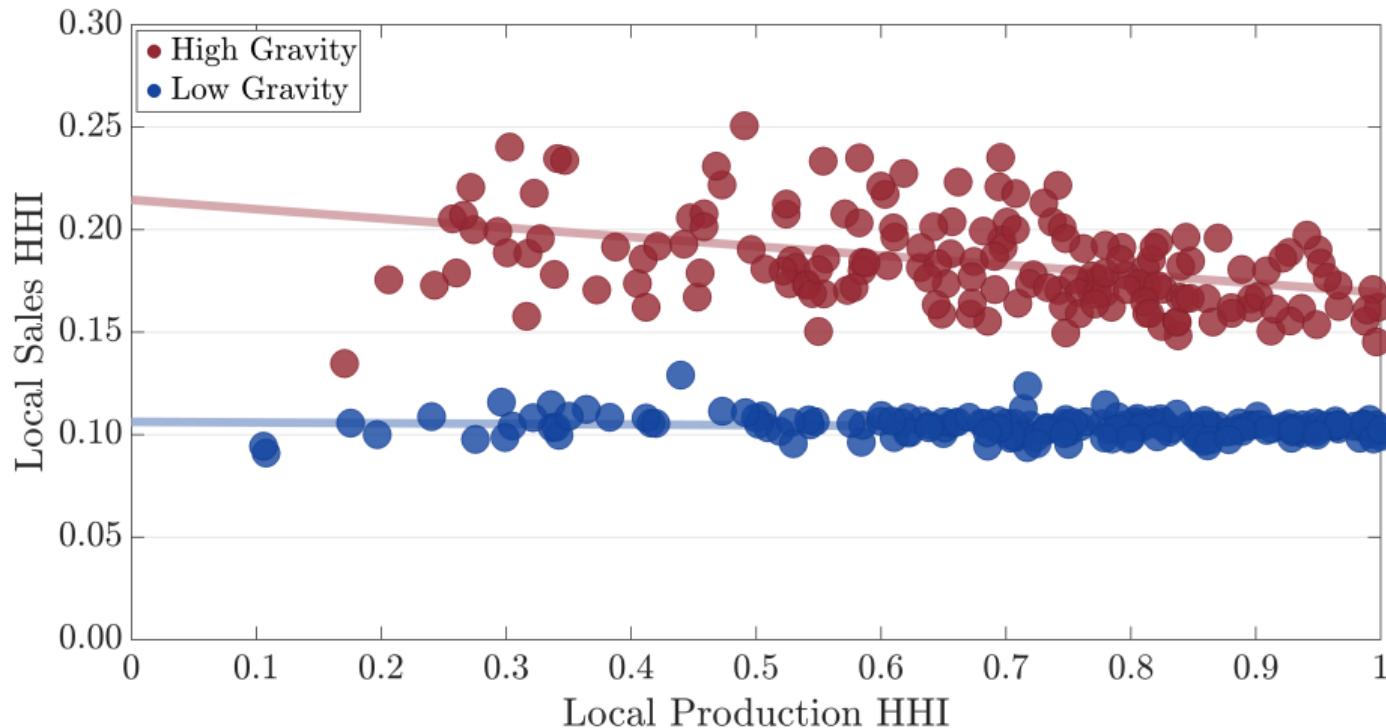

Parameter Values

Parameter	Value	Target
Assigned Values		
Substitution across sectors	θ	1.25
Substitution within sectors	$\gamma = \lambda$	10
Method of Moments		
Pareto tail firm productivity	ξ	10.35
Gumbel rank correlation	ρ	0.81
Trade cost	$\delta(s)$	Gravity 3-digit NAICS

Model Fit

Moments [targeted]	Data	Model
National Concentration		
Top 4 sales share	0.42	0.44
Top 20 sales share	0.73	0.65
HHI sales	0.10	0.10
Local Concentration		
HHI production	0.36	0.37
Multi-Establishment Firms		
Fraction multi-establishment firms	0.03	0.03
Employment share of multi-establishment firms	0.54	0.53
Sales share of multi-establishment firms	0.62	0.55


Model Fit: Gravity


Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - ▶ Spatial Correlations
 - ▶ Geography Matters
 - ▶ Trade Cost Reduction

Spatial Correlation of Concentration Measures

The Role of Gravity

Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - ▶ Spatial Correlations
 - ▶ Geography Matters
 - ▶ Trade Cost Reduction

Geography Matters: Markup Distribution

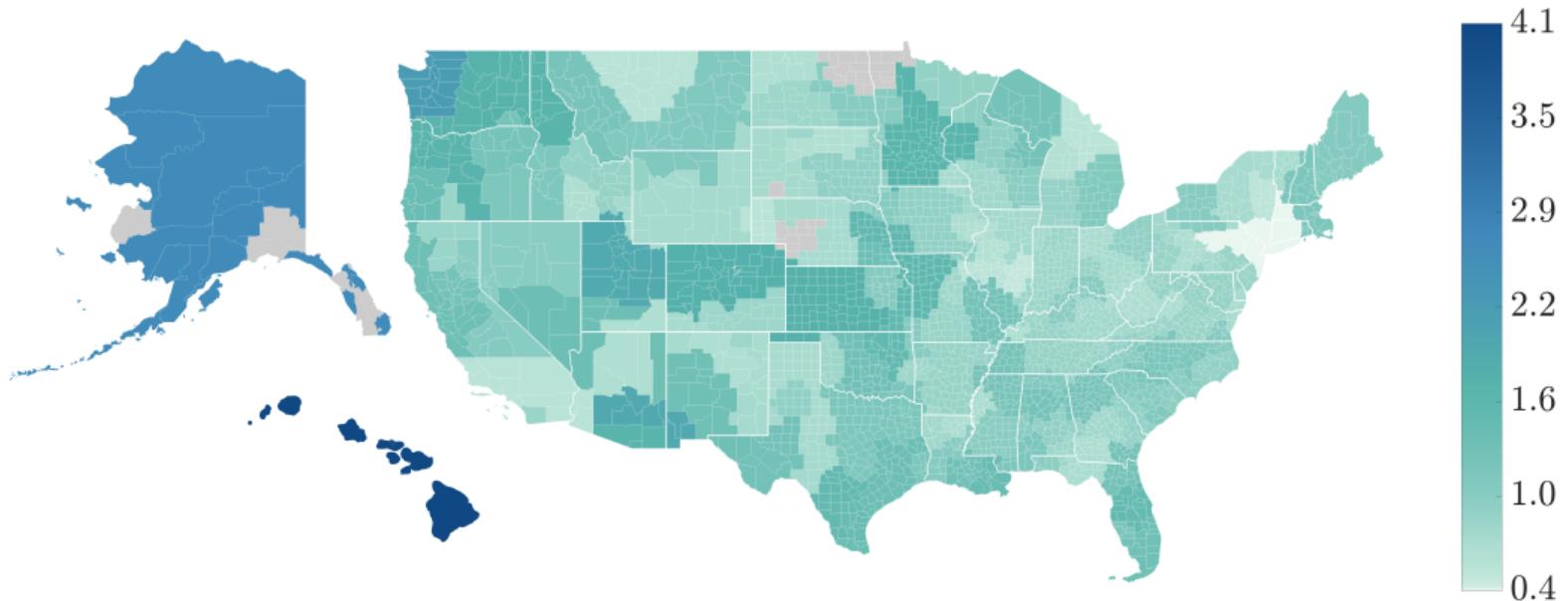
Percentile	Benchmark Model	No Geography
p01	1.13	1.12
p10	1.15	1.14
p25	1.18	1.15
p50	1.23	1.17
p75	1.30	1.20
p90	1.41	1.25
p99	1.62	1.40
Aggregate Markup	1.26	1.18

- Geography matters for **both the level and dispersion** of sectoral markups
- Geography matters for **the level** of the aggregate markup

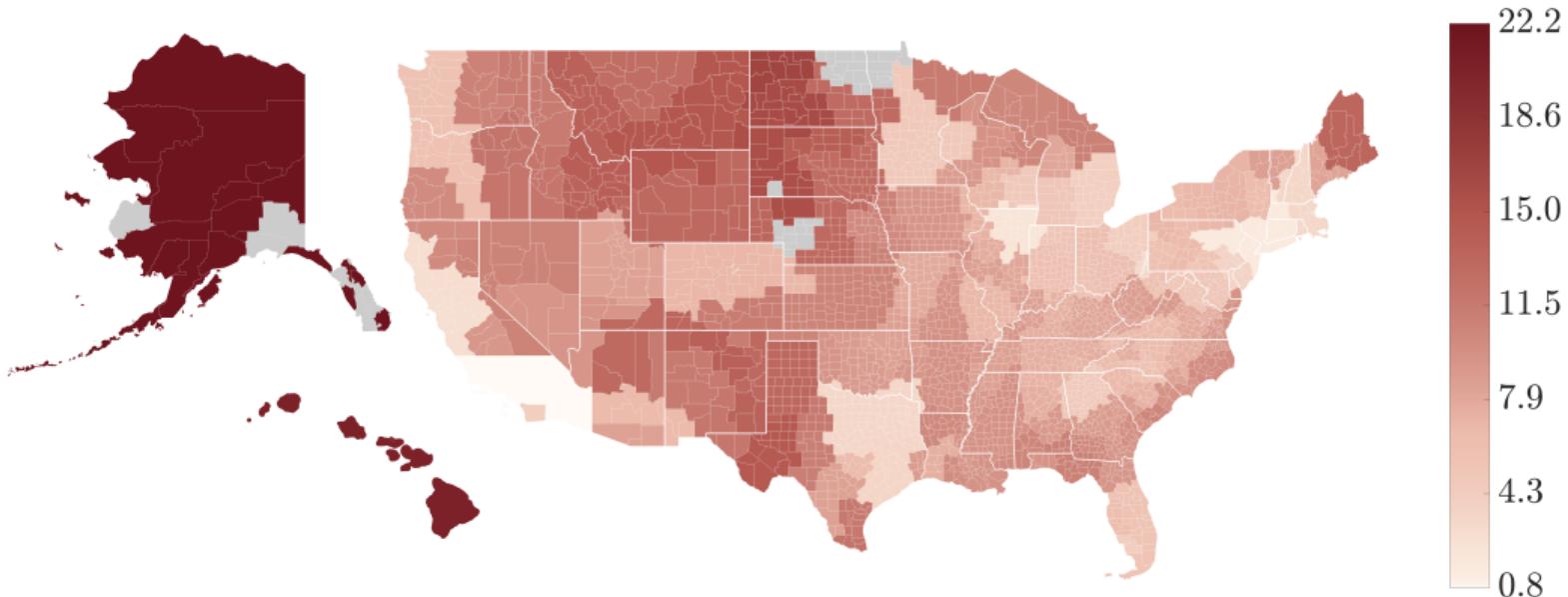
Consumption Gains From Eliminating Markups

Percentile	Benchmark Model
p01	0.9%
p10	3.6%
p25	3.9 %
p50	5.6%
p75	6.9 %
p90	9.1%
p99	14.5%
Overall	5.8%

- Geography matters for cost of markups: **5.8%** versus **3.7%** with no geography
- Percentage consumption gains are **large** and **unevenly** distributed across EAs


Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - ▶ Spatial Correlations
 - ▶ Geography Matters
 - ▶ Trade Cost Reduction


Trade Cost Reduction

	20% Increase	Benchmark	20% Decrease	Free Trade
Increasing National Sales Concentration ↑				
Top 4 share	0.43	0.44	0.45	0.49
HHI sales	0.10	0.10	0.10	0.11
Increasing Local Production Concentration ↑				
HHI production	0.36	0.37	0.38	0.40
Decreasing Local Sales Concentration ↓				
Top 4 share	0.61	0.58	0.56	0.49
HHI sales	0.16	0.15	0.13	0.11

Markup Decrease from 20% Reduction in Trade Cost

Consumption Gains from 20% Reduction in Trade Cost

