Local Concentration. National Concentration. and the Spatial Distribution of Markups

Jonathan Becker^a Chris Edmond Virgiliu Midrigan^{a,d}

Daniel Yi Xu^{b,d}

^a New York University

^b Duke University

^c NBFR

May 17, 2024

Midwest-Macro at Richmond Fed

Motivation

- Rising national and local production concentration
 - ► Autor *et al.* (2020) and Autor *et al.* (2023)
- In a model with endogenously variable markups this might be concerning
 - ► Edmond, Midrigan, and Xu (2023)
- But, evidence of **divergence** of national and local sales concentration
 - ▶ Rossi-Hansberg and Hsieh (2023) and Benkard *et al.* (2023)
- This paper: quantitative model where local sales concentration matters for markups

This Paper

- General equilibrium model of intra-national trade with
 - Heterogenous multi-unit manufacturing firms shipping across many locations
 - Oligopolistic competition in each destination market
- Calibrate model to match
 - National concentration of 6-digit NAICS industries
 - Operation of **multi-unit** firms
 - Gravity of each industry in Commodity Flow Survey
- Study implications for spatial markup dispersion and quantify welfare implications

Findings

- Unobserved in data; model implies a local sales HHI of 0.21
- Spatial correlation between local production and local sales HHI is noisy
 - ► Increases with the strength of industry level gravity
- Model with no geography and same national concentration implies much lower markups
- Decreasing spatial trade frictions
 - ► Increase national and local production concentration
 - **Decrease** local sales concentration and markups

Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - Spatial Distribution of Markups
 - Geography and Aggregate Markups
 - ► Trade Cost Reduction

Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - Spatial Distribution
 - Geography and Aggregate Markups
 - ► Trade Cost Reduction

The Environment

- J locations indexed at $j,k=1,\ldots,J$
- Continuum of sectors $s \in (0, 1)$
- There are n(s) firms i in each sector s
 - ► Firms can have multiple establishments
 - Firm-location productivity $z_{ij}(s) = \bar{z}_i(s) \hat{z}_{ij}(s)$
- Sector-specific iceberg trade-cost $\tau_{jk}(s) \ge 1$
- L_j workers inelastically supply e_j units of labor in location j
- Representative household's budget is $P_jc_j = w_je_j + \bar{\pi}$ and $C_j = L_jc_j$

Final Good

• In destination k the non-tradable final good is produced as

$$C_k = \left(\int C_k(s)^{\frac{\theta-1}{\theta}} ds\right)^{\frac{\theta}{\theta-1}} \text{ with } \theta > 1 \qquad \text{and} \qquad C_k(s) = \left(\sum_{i=1}^{n(s)} c_{ik}(s)^{\frac{\gamma-1}{\gamma}}\right)^{\frac{\gamma}{\gamma-1}} \text{ with } \gamma > \theta$$

• Firm i's shipment to k is itself a CES aggregate over different establishments

$$c_{ik}(s) = \left(\sum_{j=1}^{J} c_{ijk}(s)^{\frac{\lambda-1}{\lambda}}\right)^{\frac{\lambda}{\lambda-1}}$$

with special cases $\lambda=\gamma$ and $\lambda\to\infty$

• Resource constraint $y_{ijk}(s) = \tau_{jk}(s) c_{ijk}(s)$

• Demand Functions

Intermediate Producers

• Production of firm i in origin j for destination k is

$$y_{ijk}(s) = z_{ij}(s) \,\ell_{ijk}(s)$$

• At local wages $\{w_j\}$, firm *i*'s profits from destination market k are

$$\sum_{j=1}^{J} \left(p_{ijk}(s) - \frac{w_j}{z_{ij}(s)} \right) y_{ijk}(s)$$

- Given CRS, firms maximize profits for each market k separately in two steps
 - 1. Within-firm allocation: cheapest way to deliver $c_{ik}(s) = 1$ subject to price-index
 - 2. Local competition: oligopolistically competitive choice of $c_{ik}(s)$ à la Cournot

Profit Maximization: Within-Firm Allocation

• In 1st step, firms minimize the cost of delivering $c_{ik}(s) = 1$

$$\min_{p_{ijk}(s)} \left\{ \sum_{j=1}^{J} \underbrace{\frac{\tau_{jk}(s) w_j}{z_{ij}(s)}}_{\text{cost } \phi_{ijk}(s)} \underbrace{\left(\frac{\tau_{jk}(s) p_{ijk}(s)}{P_{ik}(s)}\right)^{-\lambda}}_{\text{demand } c_{ijk}(s) \mid c_{ik}(s) = 1} + \xi_{ik}(s) \left[\sum_{j=1}^{J} \left(\frac{\tau_{jk}(s) p_{ijk}(s)}{P_{ik}(s)}\right)^{1-\lambda} - 1 \right] \right\}$$

• FOCs imply that firms set an origin-independent markup

$$p_{ijk}(s) = \mu_{ik}(s) \frac{w_j}{z_{ij}(s)} \quad \rightsquigarrow \quad P_{ik}(s) = \mu_{ik}(s) \underbrace{\left(\sum_{j=1}^J \left(\frac{\tau_{jk}(s) w_j}{z_{ij}(s)}\right)^{1-\lambda}\right)^{\frac{1}{1-\lambda}}}_{\text{unit-cost } \phi_{ik}(s) \text{ of } c_{ik}(s)}$$

4

Profit Maximization: Local Competition

• Using result from within-firm allocation

$$\max_{c_{ik}(s)} \left\{ c_{ik}(s) \left(P_{ik}(s) - \phi_{ik}(s) \right) \middle| c_{ik}(s) = \left(\frac{P_{ik}(s)}{P_k(s)} \right)^{-\gamma} \left(\frac{P_k(s)}{P_k} \right)^{-\theta} C_k \right\}$$

• Atkeson and Burstein (2008) at each destination k

$$\mu_{ik}(s) = \frac{\epsilon_{ik}(s)}{\epsilon_{ik}(s) - 1}$$

where the demand elasticity $\epsilon_{ik}(s)$ is

$$\epsilon_{ik}(s) = \left[\omega_{ik}(s)\frac{1}{\theta} + \left(1 - \omega_{ik}(s)\right)\frac{1}{\gamma}\right]^{-1}$$

Labor Market Clearing

 $\bullet\,$ Labor used in origin j to produce for destination market k

$$\ell_{jk}(s) = \frac{\tau_{jk}(s)}{\bar{z}_{jk}(s)} \left(\frac{P_k(s)}{P_k}\right)^{-\theta} C_k$$

• Labor market clearing in each location j

$$e_j L_j = \int \sum_{k=1}^J \ell_{jk}(s) \, ds$$

• Substituting $\ell_{jk}(s)$ into labor market clearing

$$e_j L_j = \sum_{k=1}^J P_k C_k \int \frac{\tau_{jk}(s)}{\bar{z}_{jk}(s) P_k(s)} \left(\frac{P_k(s)}{P_k}\right)^{1-\theta} ds$$

• Budget expresses P_kC_k as a function of wages, labor endowments, and markups

Outline

• Model Environment

- Quantification
- Quantitative Exercises
 - Spatial Distribution
 - Geography and Aggregate Markups
 - ► Trade Cost Reduction

Quantitative Model

- Take n(s) directly from Census data on 6-digit manufacturing firms
 - ► In total 364 NAICS6 sectors, 51 states + DC, 270K firms
- Firm-level productivity $\bar{z}_i(s)$ Pareto with tail parameter ξ and $\hat{z}_{ij}(s) \in \{0, 1\}$
- Assign "home" for firm i according to business pattern weights
- Additional plants at each location with $\operatorname{Prob}(\hat{z}_{ij}(s)=1) = [1 + \alpha_0 \, \bar{z}_i(s)^{\alpha_1}]^{-1}$ for each j
- Sector-specific trade cost $\tau_{jk}(s)$ from CFS gravity regressions

Calibration

Parameter		Value	Target
1. Assigned			
Substitution across sectors Substitution within sectors	$\theta \\ \gamma = \lambda$	1.25 10	Edmond, Midrigan, Xu (2023) Edmond, Midrigan, Xu (2023)
2. Calibrated			
Firm productivity Trade elasticities Multi-unit probability	$\xi \\ \delta(s) \\ \alpha_0 \\ \alpha_1$	7.35 ~ 0.0003 0.082	National concentration Gravity coefficients NAICS3 Fraction of multi-unit firms Sales share of multi-unit firms

Model Fit

Moments	Data	Model
1. National Concentration		
Top 4 sales share	0.42	0.46
Top 20 sales share	0.73	0.70
Sales HHI	0.10	0.11
2. Multi-Unit Firms		
Fraction of multi-unit firms	0.04	0.09
Sales share of multi-unit firms	0.79	0.63
3. Untargeted		
Local Production HHI	0.36	0.35
Across State HHI	0.08	0.08

Model Fit - Gravity

Model-Implied Local Sales Concentration

Local Concentration	Model
Top 1 sales share	0.33
Top 4 sales share	0.69
Top 20 sales share	0.94
Sales HHI	0.21

- ► Local sales concentration is higher than national concentration
- ► Local sales concentration is **lower** than local production concentration

Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - ► Spatial Distribution
 - Geography and Aggregate Markups
 - ► Trade Cost Reduction

Spatial Correlation of Concentration Measures

The Role of Gravity

Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - Spatial Distribution
 - Geography and Aggregate Markups
 - ► Trade Cost Reduction

Model with No Geography

- Special case with no trade cost and fully mobile labor
- Essentially a closed-economy version of Edmond, Midrigan, and Xu (2015, AER)
- Pareto productivity parameter $\xi = 6.87$ to match national concentration

Moments	Data	Model
National Concentration		
Top 4 sales share	0.42	0.47
Top 20 sales share	0.73	0.72
Sales HHI	0.10	0.08

Markup Distribution

Percentile	Baseline Model	No Geography
p1	1.17	1.12
p10	1.21	1.14
p25	1.25	1.15
p50	1.29	1.17
p75	1.36	1.20
p90	1.46	1.25
p99	1.62	1.40
aggregate	1.31	1.18

► Trade cost and geography matter for sectoral and aggregate markups

The Role of Gravity

Outline

- Model Environment
- Quantification
- Quantitative Exercises
 - Spatial Distribution
 - Geography and Aggregate Markups
 - ► Trade Cost Reduction

Diverging National and Local Sales Concentration

	20% increase	baseline	20% decrease	free trade
1. National Concentration				
Top 4 sales share	0.44	0.46	0.49	0.57
Top 20 sales share	0.67	0.70	0.73	0.83
Sales HHI	0.10	0.11	0.11	0.13
2. Local Production Concentration				
Production HHI	0.34	0.35	0.37	0.42
3. Local Sales Concentration				
Top 4 sales share	0.72	0.69	0.66	0.57
Top 20 sales share	0.95	0.94	0.92	0.83
Sales HHI	0.21	0.20	0.18	0.13

Diverging National and Local Sales Concentration

	20% increase	baseline	20% decrease	free trade
1. National Concentration				
Top 4 sales share	0.44	0.46	0.49	0.57
Top 20 sales share	0.67	0.70	0.73	0.83
Sales HHI	0.10	0.11	0.11	0.13
2. Local Production Concentration				
Production HHI	0.34	0.35	0.37	0.42
3. Local Sales Concentration				
Top 4 sales share	0.72	0.69	0.66	0.57
Top 20 sales share	0.95	0.94	0.92	0.83
Sales HHI	0.21	0.20	0.18	0.13

Counterfactual Markup Distribution

Percentile	20% increase	baseline	20% decrease	free trade
p1	1.18	1.17	1.16	1.13
p10	1.23	1.21	1.20	1.16
p25	1.27	1.25	1.23	1.18
p50	1.32	1.29	1.27	1.22
p75	1.38	1.36	1.34	1.28
p90	1.49	1.46	1.43	1.39
p99	1.66	1.62	1.60	1.55
aggregate	1.33	1.31	1.29	1.24

- ► Reduction in trade costs **promotes competition** in destination markets
- ▶ Rising national and local production concentration are consistent with lower markups

Next Steps & Outlook

- Incorporate imports both into model and data
- "China shock" and market structure changes
- Market power implications for domestic producers at industry-state level

Appendix

Demand

• Hicksian demand in destination market k is

$$c_{ijk}(s) = \left(\frac{\tau_{jk}(s) p_{ijk}(s)}{P_{ik}(s)}\right)^{-\lambda} \left(\frac{P_{ik}(s)}{P_{k}(s)}\right)^{-\gamma} \left(\frac{P_{k}(s)}{P_{k}}\right)^{-\theta} C_{k}$$

• With CES price-indices

$$P_k = \left(\int P_k(s)^{1-\theta} ds\right)^{\frac{1}{1-\theta}}$$
$$P_k(s) = \left(\sum_{i=1}^{n(s)} P_{ik}(s)^{1-\gamma}\right)^{\frac{1}{1-\gamma}}$$
$$P_{ik}(s) = \left(\sum_{j=1}^J \left(\tau_{jk}(s) p_{ijk}(s)\right)^{1-\lambda}\right)^{\frac{1}{1-\lambda}}$$

Spatial Distribution of Production HHI

◀ back

Spatial Distribution of Sales HHI

▲ back

Trade Cost Reduction over Time

- Rising labor productivity in the U.S. transportation sector and a decreasing gravity
 - ► Cosar et al. (2023) find distance elasticities decreased around 15 20%

• Could this explain the increase in national and local production concentration?

• Welfare implication of rising national concentration due to the trade cost reduction